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Abstract

We investigate whether 7-closure, previously identified as the cri-
terion for structural persistence under collapse, admits a conservation
principle at the level of refinement evolution. Rather than treating
closure as a terminal or purely classificatory property, we ask whether
T-closure constrains admissible refinement paths through a discrete
continuity condition.

To this end, we introduce a discrete divergence operator defined on
the refinement graph of a mechanism and formalize the notion of struc-
tural flux using admissible, non-numerical flux carriers. These carriers
encode the transport of closure-relevant structure across refinement
steps and are invariant under admissible renaming and canonicaliza-
tion. We define 7-conservation as the requirement that all 7-closed
structural states be divergence-free with respect to such a flux.

Finally, we construct a minimal structural configuration—a non-
trivial recurrent refinement orbit admitting a strict closure-relevant
leak—that falsifies 7-conservation if closure is attributed to that or-
bit. This counterexample isolates the precise condition under which
T-closure fails to function as a conservation principle.

The results clarify the status of 7-closure as either a purely termi-
nal criterion or a law-like constraint on refinement evolution, without
introducing new closure mechanisms or extending the 7-basis.

1 Introduction

In prior work, 7-closure was identified as the criterion by which recursive
structures persist under refinement and survive collapse. Closure, in this
sense, is not attributed to numerical convergence or stability, but to the
satisfaction of irreducible structural constraints that remain invariant under
admissible refinement. While this characterization establishes which struc-
tures are preserved, it does not address whether 7-closure merely classifies



terminal outcomes or whether it constrains the admissible refinement evolu-
tion itself.

The present work examines this distinction by asking whether 7-closure
admits a conservation principle: namely, whether closure persistence can
be expressed as a discrete continuity condition governing the transport of
closure-relevant structure across refinement steps. This question is structural
rather than dynamical and concerns refinement evolution prior to collapse,
without introducing new closure mechanisms or altering the established 7-
basis.

Terminological Remark (Conservation)

Throughout this paper, the term conservation is used in a strictly discrete
and structural sense. It does not refer to numerical invariance, physical
quantities, temporal evolution, or continuous fields. Rather, conservation
denotes the absence of net structural divergence in the refinement graph of a
mechanism, expressed via a discrete divergence operator acting on admissible
refinement steps.

Accordingly, a conserved quantity is not an evaluated magnitude but a
bookkeeping condition on the transport of closure-relevant structure under
refinement. All conservation statements in this work are invariant under
admissible renaming and canonicalization and are formulated entirely at the
mechanism level.

Non-Extension Statement

The introduction of a discrete divergence operator and structural flux for-
malism does not extend, modify, or enlarge the set of admissible closure
mechanisms in the 7-regime. In particular, no new 7-invariants are pro-
posed, and no additional closure classes are introduced.

The conservation principle examined here is not inferred from the nu-
merical behavior of known constants, nor is it used to retroactively justify
closure persistence. Instead, conservation is tested as an independent struc-
tural constraint on refinement evolution. Failure of conservation does not
invalidate the classification of T-closure established in previous work; it clar-
ifies its scope by distinguishing terminal persistence from law-like constraint.

This separation prevents circularity by ensuring that closure classifica-
tion is not derived from conservation assumptions, and conservation is not
asserted on the basis of observed closure alone.



2 Preliminaries (Mechanisms and Refinement)

Definition 1 (Mechanism). A mechanism is a tuple M = (£, R, C, O) where
Y is a finite alphabet, R is a set of rewrite/generation rules on X, C' is a set
of admissibility constraints, and O specifies rule ordering/interaction.

Definition 2 (Structural states and refinement sequence). Let S(M) be
the space of structural states gemerated by M, modulo admissible renam-
ing/canonicalization. A refinement sequence is

S()—>51—>SQ—>~--

where each arrow is induced by a refinement operation (e.g. deeper genera-
tion, tighter constraints, stricter rule application).

Definition 3 (7-closure predicate (abstract)). Fiz a closure predicate
Cl; : S(M) — {0,1},

where Cl-(S) = 1 means “S is T-closed” (i.e. satisfies the relevant closure
constraint) and Cl-(S) = 0 means “not T-closed.” This is structural, not
numerical.

3 The Refinement Graph and Discrete Divergence
The refinement evolution can be treated as a directed graph (or directed

multigraph) whose edges are admissible refinement steps.

Definition 4 (Refinement graph). Given a mechanism M, define the di-

rected graph
G(M) = (V, E),

where V-C S(M) is the set of reachable structural states, and (S —T) € E
iff there exists an admissible refinement step sending S to T.

Chains and the boundary operator

We define a purely combinatorial chain complex on G(M).

Definition 5 (0- and 1-chains). Let A be an abelian group (the flux coeffi-
cient group; chosen below). Define the free A-modules:

Co(G; A) = {Zavv D ay €A, finite sum}, C1(G;A) = {E bee : be € A, finite sum
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Definition 6 (Boundary map). For a directed edge e = (u — v) define
de) =v—u,

and extend A-linearly to 0 : C1(G;A) = Co(G; A).

Flux and divergence

Definition 7 (Flux field). A flux field is a function
J:E— A

Equivalently, it is a 1-cochain on edges with values in A.

Definition 8 (Discrete divergence at a vertex). Given a fluz field J, define
the divergence at a vertex v € V by

(V- D))= > Je) = > Jle),

e=(v—w) e=(u—v)

where the first sum ranges over edges leaving v and the second over edges
entering v.

Lemma 1 (Coordinate-free form). If we identify J with an element of
Ci(G;A) via J =3 g J(e)e, then

V-J=090(J) € Cy(G; A),
with evaluation at vertices matching the signed incidence formula above.

4 Admissible Flux Carriers (Mechanism-Level, Non
Numerical)

The key structural requirement is that “flux” must not be a numerical con-
served quantity. It must be carried by structural features that are invariant
under admissible renaming/canonicalization and are defined at the mecha-
nism level.

4.1 Choosing the coefficient group A

We now specify admissible choices for A and what J(e) is allowed to encode.



Definition 9 (Flux carrier type). A flux carrier type is a functorial assign-
ment

F : S(M) — Obj(Ab),

mapping each structural state to an abelian group of structural charges, to-
gether with edge maps along refinement steps. In the present framework we
use a fized global carrier group A that all edges draw from (a coarse, universal
charge space).

Definition 10 (Admissible flux coefficient group). An abelian group A is
admissible if its generators correspond to structural invariants (not evaluated
numbers) that are:

e invariant under admissible renaming/canonicalization,
e definable pre-numerically (before any evaluation),

o stable under refinement bookkeeping (so they can be transported along
edges).

Canonical examples of admissible A include:

1. Signature group. A = Z[T| where T = {O,R,P} are closure-
mechanism tags (orthogonal/relaxation/projection), and Z[T] is the
free abelian group on these tags.

2. Defect-type group. A = Z[D] where D indezes structural defect
types (e.g. constraint-violation classes, rule-incompatibility classes),
again as formal symbols rather than real numbers.

3. Typed multiset group. A the Grothendieck group of finite multisets
of typed motifs (rewrite motifs, constraint motifs) modulo admissible
equivalence.

4.2 Mechanism-level flux along refinement edges

A refinement step changes the mechanism’s admissible structural content.
Flux should quantify the structural transfer of closure-relevant content across
that step.

Definition 11 (Admissible flux assignment). Let e = (S — T) € E. An
admissible flux assignment is a map J : E — A such that J(e) depends only
on:



e the pair of structural equivalence classes (S,T),

e the refinement action type (deeper generation, tightened constraint,
stricter ordering),

e and the induced change in closure-relevant structural invariants,

and is invariant under admissible renaming/canonicalization of symbols in
S and T.

Interpretation. Think of J(e) as the transport of closure-relevant struc-
ture under refinement. For instance, in the signature group case, J(e) may
encode that a refinement step introduces/removes a contribution of type O,
R, or P to the closure bookkeeping. No numeric magnitudes are required.

5 A Formal 7-Conservation Principle

We can now state a conservation law purely structurally.

Definition 12 (7-conservation (discrete form)). A mechanism M satisfies
T-conservation if there exists an admissible coefficient group A and an ad-
massible flux field J : E — A such that:

1. (Local conservation) For every vertex v € V with Cl.(v) =1,

(V- J)(v) = 0.

2. (No closure without conservation) If (V- J)(v) # 0 then Cl.(v) =
0. Equivalently, Cl.(v) = 1 = (V- J)(v) = 0 is taken as a hard
constraint.

3. (Refinement covariance) If two refinement steps are equivalent un-
der admissible renaming/canonicalization, they carry the same flux
value in A.

Proposition 1 (Interpretation of the Conservation Test). The conserva-
tion test succeeds if there exists at least one admissible carrier group A and
admissible flux J for which T-closed vertices are exvactly the divergence-free

vertices:
Cly(v)=1 <= (V-J)(v)=0.



6 Minimal Counterexample that Falsifies 7-Conservation

A falsifier must show that closure can occur without a divergence-free law,
or that divergence-free flow can occur without closure. A falsifier must show
that closure can occur without a divergence-free law, or that divergence-free
flow can occur without closure. Your roadmap demands the stronger, cleaner
falsifier:

There exists a T-closed state v such that for every admissible fluz field J,

(V- J)(v) # 0.
We now construct the smallest refinement graph pattern that forces this
failure.
6.1 The minimal graph pattern
Consider the directed graph with three vertices {A, B, C'} and edges

A—B, B—A A-—C.

This is a 2-cycle (A <» B) with a single refinement “leak” from A to a new
state C'.

Definition 13 (Meta-stable two-cycle with a leak). A refinement graph con-
tains a meta-stable two-cycle with a leak if there exist distinct states A, B, C
such that

A— B, B—> A, A— C are admissible refinement edges,

and additionally the refinement step A — C' corresponds to a strict tightening
that destroys the cycle at the next refinement level (so C is not equivalent to

A or B).

6.2 Why this falsifies conservation (structural argument)

Assume Cl;(A) = 1 due to the existence of a nontrivial recurrent orbit A <+ B
under finite refinement, while deeper refinement admits the strict leak A — C

Now fix any admissible coefficient group A and any admissible flux field
J : E — A. Compute divergence at A:

(V-J)(A) = J(A— B)+ J(A—= C)—J(B — A).

outgoing incoming




Because A < B is a cycle, the only way to have local conservation on the
cycle itself is to balance J(A — B) with J(B — A) (up to the chosen
orientation). But the extra outgoing edge A — C' forces an uncompensated
term unless there exists an incoming edge into A carrying exactly the same
charge as A — C with opposite sign.

In the minimal pattern, there is no additional incoming edge into A
besides B — A. Therefore, for (V- J)(A) = 0 to hold, we must have

JA—-C)=0 inA.

But A — C'is, by construction, a strict refinement leak that changes closure-
relevant structure. Admissibility requires J(A — C) to encode that change,
ie. J(A— C) #0. Hence (V- J)(A) # 0 for all admissible J.

Proposition 2 (Minimal falsifier). If there exists a T-closed (or proto-closed-
certified) structural state A that participates in a nontrivial recurrent orbit
but admits a strict refinement leak A — C that is closure-relevant, then
T-conservation fails: there is no admissible flux field J with

Cl(A) =1 = (V- J)(A)=0.

6.3 A concrete mechanism-level instantiation (no numbers)

We now realize the minimal pattern using a mechanism with:
e an alternation rule producing a 2-cycle under mild constraints,
e and a stricter refinement constraint that admits a leak to a new state.

Definition 14 (Toy mechanism Meax). Let ¥ = {a,b} and rules R:
r1: a=b, ro: b= a, r3: a = aa.

Ordering O is “apply exactly one rule per refinement step.”
Constraints are refined in two stages:

o At coarse refinement, CO) forbids rs (so only ri,79 are admissible).
This yields the recurrent orbit a <> b (states A = [a], B = [b]).

o At deeper refinement, CY) is tightened so that 3 becomes admissible
for a whenever a particular structural predicate holds (e.g. a canoni-
calization tag is present). This introduces an admissible edge A — C
where C' = [aa] is not equivalent to A or B under the equivalence rules.



Graph realization. Under C(®, A — B and B — A exist and form a
nontrivial cycle. Under C(V)| the additional admissible step A — C' exists,
yielding the minimal “leak”.

Why it is closure-relevant. The step A — C changes the generative
structure class (it is not a renaming, not a canonicalization, and not equiva-
lent by admissible tolerances), hence any admissible flux carrier that records
closure-relevant change must assign J(A — C) # 0.

Therefore A cannot be both 7-closed and divergence-free in any admis-
sible flux model on this graph.

6.4 Empirical Validation via Structural Instrumentation

To assess whether the structural conservation principle formulated in this
paper is operationally meaningful, we implemented a discrete evaluation
instrument that realizes the refinement graph, admissible flux assignment,
discrete divergence operator, and falsifier detection exactly as specified in
Sections 77-77.

The instrument operates entirely at the mechanism level. Its inputs are
mechanisms M = (X, R, C, O) together with admissible refinement traces;
its outputs are refinement graphs, admissible structural flux assignments,
per-vertex discrete divergence values, and (when present) explicit falsifying
witnesses. No numerical quantities, continuous dynamics, time parameters,
or probabilistic weights are introduced at any stage.

Minimal falsifier instantiation. We instantiated the minimal counterex-
ample described in Section ?? as a concrete mechanism exhibiting (i) a non-
trivial recurrent two-cycle under coarse refinement, and (ii) a strict, closure-
relevant refinement step (a “leak”) admitted only under tightened admissi-
bility constraints. This mechanism satisfies the T-closure predicate Cl,, yet
admits an unavoidable imbalance in any admissible structural flux assign-
ment.

Running the instrument on this mechanism yields a refinement graph
with three structural equivalence classes and eleven admissible refinement
edges. The computed discrete divergence is nonzero at the cycle source and
at the leak sink, while remaining zero at the complementary cycle vertex.
The instrument detects exactly one minimal “two-cycle with leak” witness,
and the conservation test is falsified precisely at that vertex.



Control mechanisms. To verify that the instrument does not trivially
falsify conservation, we evaluated several control mechanisms. A pure re-
current cycle without refinement leaks yields identically zero divergence and
no witnesses, and therefore satisfies conservation. Mechanisms lacking non-
trivial recurrent refinement behavior fail the closure predicate and are ex-
cluded from conservation testing. These controls confirm that the instrument
discriminates conservative from non-conservative proto-closure rather than
rejecting closure indiscriminately.

Result. The empirical outcome matches the theoretical prediction exactly:
proto-closure does not imply a conservation principle. The falsifier identified
in this paper is not hypothetical but operational, and conservation fails if
and only if the structural conditions identified in Section 77 are realized.
All evaluation artifacts, including refinement traces, refinement graphs,
divergence reports, and witness data, are publicly available and linked along-
side this paper, providing a complete and reproducible record of the valida-

tion.
Mechanism Cl,  Conservation Witness
Pure cycle 1 satisfied none
Balanced cycle 1 satisfied none
Two-cycle with leak 1 falsified detected
Non-recurrent 0 n/a n/a

7 Operational Summary (Structural Evaluation Pro-
cedure)
To evaluate 7-conservation in practice:

1. Construct G(M) from refinement traces (states as equivalence classes,
edges as admissible refinements).

2. Choose an admissible carrier group A (e.g. signature group Z[O, R, P]).

3. Define an admissible J : E — A from rule/constraint deltas (purely
structural).

4. Evaluate (V-J)(v) at states marked 7-closed by your closure predicate.

5. Falsification criterion: detect a minimal “two-cycle with leak” at
any state labeled closed. If such a pattern occurs with J(A — C) # 0,
conservation fails.
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A Separation of Closure Classification and Conser-
vation Testing

This appendix clarifies the logical separation between structural closure clas-
sification and conservation testing within the UNNS substrate. The distinc-
tion is not methodological but structural and is enforced by a minimal falsifier
identified in the main text.

A.1 Closure Classification (Established Results)

Previous work established a binary classification of mechanisms under refine-
ment: PROTO-CLOSED versus STRUCTURAL-COLLAPSE. This classifi-
cation is determined entirely at the mechanism level and is independent of
numerical evaluation.

In particular:

e Mechanisms are evaluated as tuples M = (X, R, C, O) rather than as
numerical realizations.

e Structural persistence is decided by the existence of nontrivial recurrent
behavior under refinement, modulo admissible equivalence.

e Collapse is terminal and eliminative: once a mechanism fails to sustain
closure under refinement, it cannot be reinstated.

This classification exhausts the question of survival under collapse and
admits no intermediate or graded verdicts.

A.2 Independence of Conservation from Closure

The present work establishes that structural closure does not, by itself, imply
a conservation principle governing refinement evolution. A mechanism may
satisfy the proto-closure criterion while admitting net structural divergence
at closed states.

The minimal falsifier is a purely structural configuration consisting of:

e a nontrivial recurrent refinement orbit, and

e a strict closure-relevant refinement leak that destroys recurrence at
deeper refinement.
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In such a configuration, every admissible assignment of structural flux
yields nonzero discrete divergence at the closed state. Therefore, no divergence-
free refinement law can be inferred from closure persistence alone.

This demonstrates that conservation must be tested independently and
cannot be assumed as a consequence of closure classification.

A.3 Operational Conservation Test

Conservation testing proceeds as follows:

1.

Construct the refinement graph G(M) = (V, E)) from admissible refine-
ment traces, with vertices identified as structural equivalence classes.

. Select an admissible flux carrier group A whose generators represent

closure-relevant structural invariants and are invariant under renaming
and canonicalization.

Define an admissible structural flux assignment J : £ — A from rule
and constraint deltas.

Evaluate the discrete divergence (V- J)(v) at vertices v classified as
T-closed.

Apply falsification by detecting minimal cycle-leak patterns at such
vertices.

A mechanism satisfies conservation only if there exists at least one ad-
missible flux assignment for which all 7-closed vertices are divergence-free.

A.4 Classification and Tagging

To preserve the binary verdict discipline of closure classification, conserva-
tion outcomes are treated as orthogonal diagnostic tags rather than new
ontological classes.

e Closure verdict: Cl.(v) = 1 (PROTO-CLOSED) or Cl-(v) = 0

(STRUCTURAL-COLLAPSE).

e Conservation tag (defined only when Cl-(v) = 1):

— Conservative: (V-J)(v) =0,
— Non-conservative: (V- J)(v) # 0.

No conservation outcome alters the closure verdict. In particular, failure
of conservation does not reinstate collapse or invalidate proto-closure.
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A.5 Design Constraints for Conservation Evaluation

Any implementation of conservation testing must satisfy the following con-
straints:

e Flux carriers must be non-numerical and defined pre-evaluation.

e Flux assignments must be invariant under admissible renaming and
canonicalization.

e Refinement graphs must distinguish recurrent cycles from strict refine-
ment leaks.

e Numerical magnitudes, time evolution, and continuous dynamics are
inadmissible.

These constraints ensure compatibility with collapse monotonicity and
prevent conservation from being misinterpreted as a dynamical or physical
law.

A.6 Structural Implication

The separation demonstrated here establishes that closure persistence and
conservation are independent structural properties. Closure classification
determines which mechanisms survive collapse, while conservation testing
determines whether refinement evolution is subject to a divergence-free struc-
tural constraint.

The minimal falsifier shows that this separation is fundamental and not
an artifact of evaluation procedure.
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